If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2-244y+576=0
a = 9; b = -244; c = +576;
Δ = b2-4ac
Δ = -2442-4·9·576
Δ = 38800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{38800}=\sqrt{400*97}=\sqrt{400}*\sqrt{97}=20\sqrt{97}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-244)-20\sqrt{97}}{2*9}=\frac{244-20\sqrt{97}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-244)+20\sqrt{97}}{2*9}=\frac{244+20\sqrt{97}}{18} $
| -2x+3(4-5x)=46 | | 3(x-4)+6x=9x-12 | | 18y-15y+y=20 | | 216=33-x | | 9c-9c+3c+c=16 | | 7y-48=4(y-9) | | -(x-9)+6x=59 | | 6/x=x/16 | | -35x+20x=5(-7-4x) | | 4(12-5x)=-192 | | 10(2x+6)=5(2x+22) | | 63=7(4+2x) | | 2x+6-6x=28-4x | | 4x+6x=3x+3 | | 9x-6=15x+19-x | | 7-3x+14=4x+21-7x | | 19t-9t=20 | | 17.5=5(1+x) | | 12x+8-10x=-40-6x | | 17.5=5(1=x | | -21x+18x=3(-9-2x) | | 0+4x=102 | | 20p2-15p=0 | | 4(u-7)-6u=-18 | | 12=5+4x/12 | | 10-5x+15=3x+25-8x | | 7=3k/24+7 | | 4b-30=50 | | 4x+6-10x=24-6x | | 6(5x+4)=264 | | 12+2a/64=22 | | p/10-1=2 |